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A linearly conforming radial point interpolation method (LC-RPIM) is presented for
stress analysis of two-dimensional solids. In the LC-RPIM method, each field node is
enclosed by a Voronoi polygon, and the displacement field function is approximated
using RPIM shape functions of Kronecker delta function property created by simple
interpolation using local nodes and radial basis functions augmented with linear poly-
nomials to guarantee linear consistency. The system equations are then derived using
the Galerkin weak form and nodal integration techniques, and the essential boundary
conditions are imposed directly as in the finite element method. The LC-RPIM method
is verified via various numerical examples and an extensive comparison study is con-
ducted with the conventional RPIM, analytical approach and FEM. It is found that the
presented LC-RPIM is more stable, more accurate in stress and more efficient than the
conventional RPIM.

Keywords: Radial point interpolation method (RPIM); meshfree method; meshless
method; interpolation function; stress analysis; radial basis function; nodal integration;
gradient smoothing.

1. Introduction

The finite element method (FEM) has been well-established as a standard compu-
tational tool for solving a wide variety of complex mechanics problems [Liu (2003);
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Liu and Gu (2005)]. However, there are some difficulties in applying FEM to sim-
ulate highly nonlinear problems involving extremely large deformation and crack
propagation with arbitrary paths. The root of the problems is the utilization of the
‘element’ which is the inherent structure of FEM. Therefore, some meshfree meth-
ods or element free methods have been developed and achieved significant progress
in recent years, such as the smooth particle hydrodynamics (SPH) method that
uses integral representation of a function and particle approximation to create dis-
cretized system equations [Lucy (1977); Gingold and Monaghan (1977); Randles
and Libersky (1996)], the element-free Galerkin (EFG) method [Belytschko et al.
(1994), Lu et al. (1994), Belytschko et al. (1996)] that uses moving least squares
(MLS) approximation and the Galerkin weak form, the reproducing kernel parti-
cle method (RKPM) that ensures the certain degree of consistency of the integral
approximation by modifying integral kernel function [Liu et al. (1995)], the mesh-
less local Petrov–Galerkin (MLPG) that uses the local Petrov-Galerkin weak form
[Atluri and Zhu (1998); Atluri et al. (1999)], the point interpolation method (PIM)
and radial point interpolation method (RPIM) based on both Galerkin weak form
and Petrov-Galerkin weak form [Liu and Gu (2001); Wang and Liu (2002)]. Detailed
descriptions and discussions on these meshfree methods can be found in [Liu (2003);
Liu and Gu (2005)].

The RPIM has the following advantages:

(1) The shape function has the Kronecker delta property, which facilitates easy
treatment of the essential boundary conditions.

(2) The moment matrix used in constructing shape functions is always invertible
for irregular nodes.

(3) The polynomials can be exactly reproduced up to desired order by polynomial
augmentation.

However, background cells must be used for Gaussian integration of the Galerkin
weak form. In addition, the RPIM is not conforming unless the constraint weak form
is used [Liu (2003)]. To make full use of the advantages of RPIM and at the same
time to ensure conformability, a linearly conforming RPIM (LC-RPIM) is proposed
in this work by means of gradient smoothing for field functions based on the nodal
integration techniques [Chen et al. (2001); Chen et al. (2002)].

This paper is organized as follows. Section 2 reviews briefly the procedure of
creating RPIM shape functions. Section 3 presents the equations for boundary value
problems of mechanics and deduces its variational weak form as well as the resultant
discrete system equations. In Sec. 4, the integration constraints are introduced to
exactly reproduce a linear displacement field solution, and the average gradient
of the field function is then given out. Section 5 performs an intensive study of
several numerical examples solved using the proposed LC-RPIM, non-conforming
RPIM (NC-RPIM), analytical formulae and the conventional FEM. Finally, some
conclusions are made in the last section.
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2. Interpolation Formulations

Radial point interpolation method (RPIM) is formulated based on the Galerkin
weak form using shape functions of Kronecker delta function property created
through an interpolation using local nodes and radial and polynomial basis func-
tions. Such an interpolation is often used by many researchers for curve or surface
fitting and function approximation [Golberg et al. (1996)]. The procedure of con-
structing RPIM shape functions is briefed as follows.

The function of a displacement component u(x) is approximated using radial
and polynomial basis functions in the form of

u(x) =
n∑
i

Ri(x)ai +
m∑
j

Pj(x)bj = RT(x)a + PT(x)b (1)

where Ri(x) and Pj(x) are radial and polynomial basis functions in two dimensional
space xT = [x, y], n is the number of field nodes in the local support domain of
point x, m is the number of terms of polynomial basis functions, and ai and bj are
coefficients for Ri(x) and Pj(x) respectively. These vectors are defined as

R(x) = [R1(x), R2(x), R3(x), . . . , Rn(x)]T

P(x) = [P1(x), P2(x), P3(x), . . . , Pm(x)]T

a = [a1, a2, a3, . . . , an]T

b = [b1, b2, b3, . . . , bm]T

(2)

The radial basis function Ri(x) has the following general form

Ri(x) = Ri(x, y) = R(ri) (3)

where ri is a distance between the interpolating point x and field node xi, which
can be represented as

ri = [(xi − x)2 + (yi − y)2]
1
2 (4)

The polynomial basis vector P(x) has the following form for two dimensional
domains.

P(x) = [1, x, y, x2, xy, y2, . . .]T (5)

The coefficient vectors a and b are determined by enforcing the displacement of
all the n field nodes within the local support domain to satisfy Eq. (1). Following a
lengthy but straightforward procedure given by [Liu (2003)], we can arrive at

u(x) = N(x)Us, (6)

where the vector N(x) contains n shape functions:

N(x) = [N1(x), N2(x), . . . , Nk(x), . . . , Nn(x)]T, (7)
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in which Nk(x) is the shape function for the kth node given by [Liu (2003)]:

Nk(x) =
n∑
i

Ri(x)Saik +
m∑
j

Pj(x)Sbjk, (8)

where Saik is the (i, k) element of matrix Sa = R−1
M − R−1

M PMSb, and Sbjk is the
(j, k)th element of matrix Sb = (PT

MR−1
M PM)−1PT

MR−1
M . The moment matrices PM

and RM are, respectively, given by

PM =




P1(x1) P2(x1) · · · Pm(x1)

P1(x2) P2(x2) · · · Pm(x2)
...

...
. . .

...

P1(xn) P2(xn) · · · Pm(xn)


 (9)

RM =




R1(x1) R2(x1) · · · Rn(x1)

R1(x2) R2(x2) · · · Rn(x2)
...

...
. . .

...

R1(xn) R2(xn) · · · Rn(xn)


 (10)

The RPIM shape functions Ni(x) obtained through the above procedure have
following properties regardless of particular form of radial basis function:

(a) Shape functions have Kronecker delta function properties, that is

Ni(x = xj) =

{
1, i = j, j = 1, 2, . . . , n,

0, i �= j, i, j = 1, 2, . . . , n.
(11)

(b) Shape functions are partitions of unity:

n∑
i

Ni(x) = 1. (12)

(c) When m = 3, the shape functions have the property of linear polynomial
reproducibility:

n∑
i

Ni(x)xi = x. (13)

(d) Shape functions have simple derivatives such as


∂Nk

∂x

∂Nk

∂y


 =

n∑
i

∂Ri

∂ri

Saik

ri




x − xi

y − yi


+

m∑
j

Sbjk




∂Pj

∂x

∂Pj

∂y


. (14)
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There are many types of radial basis functions [Golberg et al. (1996); Liu (2003)].
In this work the multiquadrics radial basis function (MQ-RBF) with arbitrary real
shape parameters is used that has the form of [Liu (2003)]

R(ri) = (r2
i + α2

cd
2
c)

q, (15)

where αc and q are real shape parameters to be determined by numerical testing,
dc is a characteristic length that is related to the nodal spacing in the local sup-
port domain of the interested point x, and dc = min{ri}(ri > 0, i = 1, . . . , n) in
this work.

3. Variational Form

In this section, standard boundary value equations for plane problems in solid
mechanics are first introduced, and then the variational principle is established by
defining potential functional. Finally the discrete system equations of the presented
LC-RPIM method are derived.

3.1. Weak form equations for 2D elasticity

(1) The static equilibrium equation (strong form) governing the solid defined in
domain Ω can be given as

BT

(
∂

∂x
,

∂

∂y

)
σ + b = 0 in Ω (16)

where σ = [σxx, σyy, τxy]T is a vector of stress and b represents body force
density. The operator BT( ∂

∂x , ∂
∂y ) has following form

BT

(
∂

∂x
,

∂

∂y

)
=




∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x


 . (17)

(2) At an arbitrary point the strain-displacement relation is given as

ε = B
(

∂

∂x
,

∂

∂y

)
u, (18)

in which ε = [εxx, εyy, εxy]T is strain vector, u = [u, v]T consists of displacement
components.
(3) The constitutional equation for the material is given as

σ = Dε, (19)
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where D is a matrix of elastic constants of the material. For elastic plane stress
problems it is represented with Young’s modulus E and Poisson’s ratio ν as

D =
E

1 − ν2




1 ν 0
ν 1 0

0 0
1 − ν

2


 . (20)

For plane strain problems, Eq. (20) holds after substituting E and ν with E/(1 − ν2)
and ν/(1 − ν), respectively.
(4) Boundary conditions

The displacement boundary condition can be given as

u = ū on Γu, (21)

where ū is a specified displacement at boundary Γu.
The traction boundary condition is given as

T = BT(nx, ny)σ = T̄ on ΓT (22)

in which T̄ is a given traction at boundary ΓT and nT = [nx ny] is the outward
normal vector of the traction boundary.

3.2. Variation principle

By applying virtual displacement δu under the current configure with given bound-
ary conditions, the virtual potential energy δΠe and virtual work done by external
force δW ext are respectively given as follows

δΠe =
∫

Ω

(δε)TdΩ =
∫

Γ

(δu)TBT(nx, ny)σ dΓ

−
∫

Ω

(δu)TBT

(
∂

∂x
,

∂

∂y

)
σ dΩ (23)

δW ext =
∫

ΓT

(δu)TT̄ dΓ +
∫

Ω

(ū)Tb dΩ (24)

Since the virtual work done by external force δW ext equals the virtual potential
energy δΠe according to the virtual work principle, we have∫

Ω

(δu)T
(
BT

(
∂

∂x
,

∂

∂y

)
σ + b

)
dΩ −

∫
ΓT

(δu)T(BT(nx, ny)σ − T̄) dΓ = 0. (25)

From Eq. (25) it is evident that Eqs. (16) and (22) can be derived because that
virtual displacement δu is arbitrary.



July 6, 2007 22:11 WSPC/IJCM-j050 00113

Linearly Conforming RPIM for Solid Mechanics Problems 407

The potential energy functional Π can be represented as

Π =
1
2

∫
Ω

εTDε dΩ −
∫

Ω

uTb dΩ −
∫

ΓT

uTT̄ dΓ (26)

The variational (or weak) form of the system can now be presented as

δΠ =
∫

Ω

(δε)TDε dΩ −
∫

Ω

(δu)Tb dΩ −
∫

ΓT

(δu)T T̄dΓ = 0. (27)

3.3. Discrete governing equations

Equation (27) can now be discretized using numerical nodal integration at the field
nodes [Chen et al. (2002)] and RPIM shape functions, which gives

δΠ = (δU)T
{(

nG∑
i=1

B̃T
i DB̃iAi

)
U −

[
nG∑
i=1

NT
i bAi +

nT∑
i=1

NT
i T̄iLi

]}
(28)

where U = [u1, v1, u2, v2, . . . , unG , vnG ]T, nG represents number of all field nodes,
nT is the number of nodes on ΓT; Ai and Li are, respectively, area and boundary
length associated with the ith node. Note the summations represent the assembly
procedure similar to that in the conventional FEM, and

Ni = N(xi) = [Ni1 Ni2 · · · Nik · · · Nini ] (29)

B̃i = B
(

∂

∂x
,

∂

∂y

)
N(xi) = [B̃i1 B̃i2 · · · B̃ik · · · B̃ini ] (30)

where Nik = Nk(xi) =
[

Nik 0
0 Nik

]
and B̃ik =

[
∂Nik

∂x 0
∂Nik

∂y

0
∂Nik

∂y

∂Nik
∂x

]T

, Nik = Nk(xi)

represents the value of the shape function of the kth node (in the local support
domain) at the ith node, and ni represents the number of nodes included in the
local support domain of the ith node.

Invoking δΠ = 0 for any δU, we can obtain a set of linear system algebraic
equations (

nG∑
i=1

B̃T
i DB̃iAi

)
U =

nG∑
i=1

NT
i bAi +

nT∑
i=1

NT
i T̄iLi (31)

Equation (31) can be rewritten in a matrix form of

KU = F (32)

where

K =
nG∑
i=1

Ki (33)

F =
nG∑
i=1

Fbi +
nT∑
i=1

FTi (34)
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Ki = B̃T
i DB̃iAi (35)

Fbi = NT
i biAi (36)

FTi = NT
i T̄iLi (37)

4. Integration Constraint and Gradient Smoothing

The convergence of the numerical solution for a partial differential equation is deter-
mined by the approximation of the field variables and the numerical integration of
the weak form. RPIM shape functions with linear consistency can be obtained by
including complete linear polynomial basis functions (m = 3). The linearly con-
sistency in the RPIM shape functions does not, however, necessarily guarantee a
linear exactness of the solution obtained by its weak form due to the conformability.
Constraints associated with the nodal integration are required to ensure a linearly
conformability in RPIM.

4.1. Integration constraint

For a given linear displacement field ignoring body force density b and displacement
boundary, substituting stress constant σ = σc and traction T̄ = BT(nx, ny)σc into
Eq. (31), we have [Bonet and Kulasegaram (2002); Chen et al. (2001)](

nG∑
i=1

B̃T
i Ai

)
σc =

(
nT∑
i=1

NT
i BT(nix, niy)Li

)
σc. (38)

Since σc is arbitrary, the above equation is true as long as

nG∑
i=1

B̃T
i Ai =

nT∑
i=1

NT
i BT(nix, niy)Li, (39)

or more general form

nT
i∑

j=1

Aj∇Nji =
nB

i∑
k=1

LkNkink, (40)

where nT
i and nB

i , respectively, represent nodal number in the influence domain of
the ith field node Ω̃i and on its boundary ∂Ω̃i.

It is noted that if the ith field node is in the interior of the domain, or specifically
∂Ω̃i ∩ Γ = φ, the right-hand side of this expression will vanish.

Only if the constraint given in Eq. (40) is satisfied can the RPIM obtain exact lin-
ear solution, and hence it will pass the standard linear patch test. Unfortunately, the
condition cannot usually be met. Note that Eq. (40) is simply the nodal integration
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version of the following continuous form:∫
Ω̃i

∇Ni(x)dΩ =
∫

∂Ω̃i

n(x)Ni(x)dΓ (41)

Equation (41) is always satisfied as a result of the divergence theorem (or
Gaussian theorem). Consequently, the reason for failing to satisfy Eq. (40) is due to
the error introduced by nodal integration procedure using the standard gradient of
displacement interpolation in Eq. (14) during the variational formation. Constraint
given in Eq. (40) has already been arrived at by others for other meshfree methods
[Bonet and Kulasegaram (2002); Chen et al. (2001)].

4.2. Gradient smoothing

To satisfy Eq. (40), a smoothing operation to the gradient of the field function is
performed as follows [Chen et al. (2001); Chen et al. (2002)]:

∇hu(xi) =
∫

Ωi

∇u(x)Φ(x − xi)dΩ. (42)

Using integration by parts, Eq. (42) can be rewritten as

∇hu(xi) =
∫

Γi

n(x)u(x)Φ(x − xi) dΓ −
∫

Ωi

u(x)∇Φ(x − xi)dΩ (43)

where Φ is a smoothing function, Ωi is the representative domain of the ith field
node and Γi is its boundary, as shown in Fig. 1.

For simplicity a piecewise constant function is used:

Φ(x − xi) =




1
Ai

x ∈ Ωi;

0 x /∈ Ωi.

(44)

Fig. 1. Example of Voronoi diagram in a 2D domain.
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Substituting Eq. (44) into Eq. (43), we obtain

∇hu(xi) =
1
Ai

∫
Γi

n(x)u(x)dΓ. (45)

Using the trapezoidal rule of integration, Eq. (45) can also be given in a efficient
form as

∇hu(xi) =
1

2Ai

nΓV
i∑

j=1

(
L1

jn
1
j + L2

jn
2
j

)
u
(
xV

j

)
(46)

where nΓV
i is the vertex number of the Voronoi diagram of the ith node, L1

j and L2
j

are respectively lengths of two edges between the jth and j1th vertexes, and the
jth and j2th vertexes, n1

j and n2
j are the corresponding outward normal vectors, as

shown in Fig. 1.
Using the RPIM shape functions, the average smoothed gradient matrix B̄(xi)

can be given as

B̄(xi) =
1

2Ai

nΓV
i∑

j=1

(
L1

jn
1
j + L2

jn
1
j

)
N(xV

j ). (47)

Considering n+ = −n− for any internal edge, the integration of the gradient
matrix B̄i(x) for the ith nodes can be given as

nT
i∑

j=1

B̄i(xj)Aj =
1
2

nBE
i∑

k=1

LE
k nE

k (Ni(xEV1
k ) + Ni(xEV2

k )) (48)

where nBE
i is the number of Voronoi edges on boundary of the influence domain

for the ith node, LE
k and nE

k are the length and outward normal vector of the kth
Voronoi edge, xEV1

k and xEV2
k are its two end points correspondingly.

It is obvious that the above equation is the discrete form of Eq. (41) which is
the necessary conditions to reproduce the constant stress field.

5. Numerical Examples

An intensive numerical study is conducted using a number of examples to val-
idate the proposed LC-RPIM. In these examples, the RPIM shape functions is
constructed using MQ-RBF and complete linear polynomial functions (m = 3)
are included to ensure linear consistency in the local displacement approximation.
When computing the discrete system matrices, two integration schemes are used
for comparison: (1) For the non-conforming RPIM (NC-RPIM), background cells
are used and the integration is performed using 5× 5 Gaussian points for each cell.
The strain matrix is calculated via the standard gradient of RPIM shape functions
given in Eq. (14), and the shape parameters used in the MQ-RBF are αc = 4
and q = 1.03; (2) For the proposed linearly conforming RPIM (LC-RPIM), nodal
integration is used and the strain matrix is computed using the average gradient
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given in Eq. (47). The numerical results are compared with those obtained using
FEM with four-node isoparametric elements, and analytical solution whenever it is
possible.

For qualitative error analysis, the following two relative error indicators for dis-
placement and energy error are used:

errord =

√∫
Ω

[(uexact − unum)2 + (vexact − vnum)2]dΩ
/∫

Ω

[u2
exact + v2

exact]dΩ,

(49)

errore =

√∫
Ω

[(εexact − εnum)TD(εexact − εnum)]dΩ
/∫

Ω

[εT
exactDεexact]dΩ,

(50)

where u and v are respectively the displacements in x and y directions, and ε is the
vector of strains. The subscripts “exact” and “num” stand for the exact analytical
solutions and the numerical solutions obtained using NC-RPIM, LC-RPIM or FEM.

Here the dimension of the support domain d of a point of interest is expressed
as follows.

d = αsd0 (51)

where d0 is the minimum dimension of the support domain including at least three
nearest nodes for the interested point and αs is a dimensionless size of the support
domain.

5.1. Patch test

The first numerical example is the standard patch test. A patch of 1 m × 1 m with
both regularly and irregularly distributed 121 field nodes is used as shown in Fig. 2.

(a) (b)

Fig. 2. A patch with 121 field nodes. (a) Background integration cells for conventional RPIM.
(b) Regular nodal distribution and the Voronoi diagrams. (c) Irregular nodal distribution and the
Voronoi diagrams (αir = 0.4).
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(c)

Fig. 2. (Continued)

The background cells shown in Fig. 2(a) are used for the Gaussian integrations for
NC-RPIM.

The irregular nodes are created by altering the coordinates of the regular nodes
using the following equation.{

x′ = x + ∆x · rc · αir ,

y′ = y + ∆y · rc · αir,
(52)

where ∆x and ∆y are, respectively, the initial nodal spacing in the x and y direction,
rc is a computer generated random number between −1.0 to 1.0, and αir is the
irregularity factor.

In this standard test, the displacements are prescribed on all four outside bound-
aries by the linear functions of u = x and v = y. The material parameters of the
patch are E = 1.0 and ν = 0.25, and the plane stress problem is considered. Sat-
isfaction of the patch test requires that the displacements obtained by a numerical
method at any interior point satisfy the same linear functions, the strains and
stresses are constant in the entire patch.

5.1.1. Effect of shape parameters αc and q

In this investigation, regularly distributed nodes with the support domain of αs =
2.5 are used. First, with the change of parameter αc at three different values of
the parameter q including 0.5, 1.03 and 1.3, the relative errors of displacement
and energy obtained are plotted in Fig. 3(a). It is observed that the displacement
and energy accuracies of the proposed method are about order of 10−14 within the
machine accuracy when the parameter αc is less than 1.0 for q = 0.5 and q = 1.3,
and 0.2 for q = 1.03. Within the bounds of the parameter αc, the accuracies of
displacement and energy are almost constant. Next, the shape parameter αc is fixed
at three values 0.1, 1.0 and 4.0, while the shape parameter q changes. The relative
errors of the displacement and energy are computed and plotted in Fig. 3(b). It is
observed again that the displacement and energy accuracies of the present method
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Fig. 3. Relative error in the standard patch tests using LC-RPIM (αs = 2.5) with regular nodes.
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are very stable except in the neighbor of the singular point (q is integer) for the MQ-
BRF function. The accuracies are much higher for smaller parameter αc. Both
errors are of the same order of 10−14 (near the machine accuracy) for αc = 0.1
and αc = 1.0. However, they are of the order of 10−11 for αc = 4.0. It implies
that the shape parameter of the MQ-RBF should be selected properly to assure
passing the patch test. In the following computations, αc = 0.1 and q = 0.5 are
used in the MQ-RBF for constructing the RPIM shape functions in the LC-RPIM.

5.1.2. Effect of the dimension of the support domain and the irregularity of
nodal distribution

In this study, the computed relative displacement and energy errors are plotted in
Fig. 4(a) for the patch test with regular nodes and varying the support domain. It
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Fig. 4. Relative error in the standard patch tests using NC-RPIM (αc = 4.0, q = 1.03) and LC-
RPIM (αc = 0.1, q = 0.5). (a) Effect of the dimension of the support domain αs for regular nodes.
(b) Effect of the nodal irregularity factor αir (αs = 2.5).
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is shown that the relative displacement and energy accuracies of the proposed LC-
RPIM are very stable with the magnitude of 10−14 within the machine accuracy
regardless the size of the support domain. The NC-RPIM is less stable, and its
accuracy of displacement is of the order of 10−7 ∼ 10−8 depending on the size of
the support domain, and it is about one order higher than its energy accuracy. For
a fixed nodal support domain of αs = 2.5, the computed relative displacement and
energy errors are plotted in Fig. 4(b) with varying irregularity factor αir for the
inner nodes in the patch. It is clearly shown that the accuracy of both displacement
and energy of the LC-RPIM is stable and much higher than those of NC-RPIM. For
irregular nodal distribution, the displacement accuracy of the LC-RPIM is almost
same as its energy accuracy and of order of 10−15. The displacement accuracy
of NC-RPIM is one order higher than its energy accuracy that is of the order of
10−3 ∼ 10−4. To improve the accuracy of NC-RPIM, larger support domain is
needed.

Based on the above comparisons, it is confirmed that the presented LC-RPIM
using the proper shape parameters in the MQ-RBF can pass the patch test, but the
NC-RPIM cannot.

5.2. Cantilever beam

The LC-RPIM is now applied to analyze the deformation and stress of a cantilever
beam. The beam is of length l and height 2c subjected to parabolically distributed
vertical force at the right end as shown in Fig. 5. The beam has a unit thickness
and plane stress problem is considered. The analytical solution is available and can
be found in a textbook by Timoshenko and Gooder [1970].

The analytical stress of the cantilever beam is given by




σx = −P (l − x)y
I

σy = 0

τxy =
P

2I
(c2 − y2)

(53)

where the moment of inertia I of the beam is given as I = 2
3c3.

x

P

l

c

c
A

y

Fig. 5. Cantilever beam (l = 8m, c = 1m, P = 1000 kN).
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(a) (b) (c)

Fig. 6. A cantilever with 451 field nodes. (a) Background integration cells for NC-RPIM. (b) Nodal
distribution and Voronoi diagrams for regular nodes. (c) Nodal distribution and Voronoi diagrams
for irregular nodes (αir = 0.4).

The analytical solution of the displacements of the beam is given by




u =
−Py

2EI

[
(2l − x)x +

(2 + ν)
3

(y2 − c2)
]

v =
P

2EI

[
v(l − x)y2 +

(
l − 1

3
x

)
x2 +

(4 + 5ν)
3

c2x

] (54)

In the numerical computation, the parameters are taken as E = 1.0× 104 MPa,
ν = 0.25, l = 8 m, c = 1 m and P = 1000 kN. Figure 6 illustrates background cells
for NC-RPIM, the nodal distribution and its corresponding Voronoi diagrams for
LC-RPIM with both regular and irregular nodes. For the case of irregular nodes, all
the interior nodes except those on x = 4 and y = 0 are shifted according to Eq. (52)
for a given αir.

5.2.1. Convergence study

In this investigation, the dimension of the support domain is fixed at 2.5 and both
regular and irregular (αir = 0.2) nodes are used. Numerical results of relative dis-
placement and energy errors calculated using different nodal spacing (averaged)
are plotted in Fig. 7. It is numerically validated that the displacement and energy
converge for both LC-RPIM and NC-RPIM. The accuracy and convergence rate in
terms of energy norm of the present LC-RPIM is much higher than those of the NC-
RPIM for both regular and irregular nodes. However, the displacement accuracy of
the LC-RPIM is lower than that of NC-RPIM. This is because both methods are all
based on the Galerkin weak form of assumed displacements, which minimizes the
potential energy. As LC-RPIM guarantees the linear conformance of the displace-
ments, the evaluation of the energy is accurate. On the other hand, the evaluation
of the energy in NC-RPIM is “approximated” due to the non-conforming nature.
Therefore, the energy error in LC-RPIM results is lower than that of NC-RPIM.
However, the “relaxation” on the displacement conformance, gives the NC-RPIM a
chance to produce better displacement solution. The situation is very similar to the
well-known comparison between the conforming FEM and non-conforming FEM.
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Fig. 7. Convergence comparison for the cantilever beam solved using NC-RPIM and LC-RPIM
with regular and irregular (αir = 0.2) nodes (αs = 2.5), the numbers in square brackets are
convergence rates. (a) Displacement. (b) Energy.
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Fig. 8. Displacement distribution along middle section (x = 1
2
l) and neutral axis (y = 0) obtained

using NC-RPIM and LC-RPIM with regular and irregular (αir = 0.2) nodes (αs = 2.5). (a)

Horizontal displacement u. (b) Vertical displacement v.

5.2.2. Comparisons of displacement and stress

In this investigation, both regularly and irregularly (given αir = 0.2) distributed
nodes are used with the support domain αs = 2.5. The displacements along middle
section and defections along neutral axis are shown in Fig. 8. The results of the
two methods are found in good agreement with the analytical results. The stress
σx along middle section and stress τxy along neutral axis are shown in Fig. 9. It
is clearly shown that the stresses obtained by the LC-RPIM are in much better
agreement with the exact results than those of the NC-RPIM, especially for the
case of irregular nodes.
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Fig. 10. Comparison of CPU time (excluding solving the system equation) for LC-RPIM and NC-
RPIM with regular nodes. (a) Effect of the dimension of the support domain using 297 regular
nodes (normalized by the CPU time of NC-RPIM for αs = 1.1). (b) Effect of the number of nodes
(normalized by the computing time of NC-RPIM with 85 nodes, αs = 2.5).

5.2.3. CPU time comparison

In this investigation, nodes are regularly distributed, and the CPU time excluding
solving the system equation is considered. This is because the CPU times for solving
the system equation are the same for both LC-RPIM and NC-RPIM. First, the
number of nodes is fixed at 297, the CPU times of LC-RPIM and NC-RPIM are
normalized against the CPU time of NC-RPIM for the support domain of αs = 1.1
as plotted in Fig. 10(a). It is shown that LC-RPIM is more efficient than NC-RPIM
especially for larger support domain. Next, the dimension of the support domain
is fixed at αs = 2.5 and the CPU times obtained for both methods are normalized
with respect to the CPU time of NC-RPIM with 85 nodes and plotted in Fig. 10(b).
It is also shown that the LC-RPIM is more efficient than NC-RPIM in term of the
same nodes used.
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Fig. 11. Infinite plate with a circular hole (a = 0.2m, p = 1MPa).

5.3. Infinite plate with a circular hole

We now study the deformation and stress in a plate with a central circular hole
of radius a = 0.2 m subjected to a unidirectional tensile load of S = 1 MPa in
the x direction, as shown in Fig. 11. Due to the symmetry, only the upper right
quadrant of the plate with the size of 1 m × 1 m is modeled. Plane stress problem
is considered, and the material parameters used are E = 104 MPa and ν = 0.25.
Symmetry conditions are imposed on the left and the bottom edges of the quarter
model and the inner arc boundary of the hole is traction free. The background cells,
nodal locations and their Voronoi diagrams are illustrated in Fig 12. The interior
nodal coordinates for relatively more irregular distribution are computed using the
following equation. {

x′ = x + LminrR cos(πrθ) · αir

y′ = y + LminrR cos(πrθ) · αir

(55)

where Lmin is the shortest distance of the node to its neighbor nodes, rR and rθ

are random numbers between −1.0 to 1.0 produced by computer, and αir is the
irregularity factor.

The analytical stress in the plate is given in the polar coordinate [18]:




σr =
p

2

[(
1 − a2

r2

)
+
(

1 − 4
a2

r2
+ 3

a4

r4

)
cos 2θ

]

σr =
p

2

[(
1 +

a2

r2

)
−
(

1 + 3
a4

r4

)
cos 2θ

]

τrθ = −p

2

(
1 + 2

a2

r2
− 3

a4

r4

)
sin 2θ

(56)

where θ is measured counterclockwise from the positive x-axis.
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(a) (b)

(c)

Fig. 12. Quarter model of an infinite plane with a circular hole. (a) Background integration cells
for NCRPIM. (b) Regular nodes and Voronoi diagrams. (c) Irregular nodes and Voronoi diagrams
(αir = 0.4).

Similarly, the analytical displacement of the plate is given as




u =
rp

2E

{[
(1 − ν) + (1 + ν)

a2

r2

]
+
[
(1 + ν) + 4

a2

r2
− (1 + ν)

a4

r4

]
cos 2θ

}

v = − rp

2E

[
(1 + ν) + (1 − ν)

2a2

r2
+ (1 + ν)

a4

r4

]
sin 2θ

(57)

Traction boundary conditions given by the analytical solution in Eq. (54) are
imposed along the right (x = 1) and the top (y = 1) edges.

5.3.1. Convergence study

In this investigation, the dimension of support domain is fixed at αs = 2.5. The
relative errors of the displacement and energy obtained using LC-RPIM and NC-
RPIM are plotted in Fig. 13 using different nodal spacing. It is numerically verified
that the displacement and energy are convergent, and their convergence rate are



July 6, 2007 22:11 WSPC/IJCM-j050 00113

420 G. R. Liu et al.

-1.25 -1 -0.75
LOG10(∆ x)

-3

-2.5

-2

-1.5

L
O

G
10

( e
rr

or
d)

LC(r)[1.9]
LC(ir)[1.7]
NC(r)[1.8]
NC(ir)[1.5]

∆
-1.25 -1 -0.75

LOG10( x)

-2.5

-2

-1.5

-1

-0.5

L
O

G
10

( e
rr

or
e)

LC(r)[1.4]
LC(ir)[1.2]

NC(r)[1.2]
NC(ir)[0.6]

(a) (b)

Fig. 13. Convergence of the solution for an infinite plate with a circular hole obtained using NC-
RPIM and LC-RPIM with regular and irregular (αir = 0.4) nodes (αs = 2.5), the numbers in
square brackets are convergence rates. (a) Displacement. (b) Energy.

about the same. The accuracy of the LC-RPIM is much higher than that of the NC-
RPIM. In addition, the nodal irregularity has a little effect on the accuracy and
convergence rate.

5.3.2. Comparisons of displacement and stress

In this investigation, two dimensions of the support domain of αs = 2 and αs = 3 are
used for the regular nodes. Figure 14 illustrates the horizontal displacement along
x-axis, vertical displacement along y-axis and radial displacement along inner arc
surface obtained using both LC-RPIM and NC-RPIM. It is clearly observed that the
displacements of LC-RPIM are in better agreement with exact results than those
of NC-RPIM. The stress σy along x-axis, stress σx along y-axis and stress σθ along
inner arc surface are calculated and plotted in Fig. 15. It is seen again that stresses
obtained by the LC-RPIM are also in better agreement with the analytical solutions
compared to NC-RPIM. The results show also that the dimension of the support
domain has little effect on displacement and stress obtained using LC-RPIM.

5.4. Semi-infinite plate

We now study a semi-infinite plane subjected to a uniform pressure loading over
[−a, a], as shown in Fig. 16(a). Plane strain problem is considered, and the analytical
solution of the stress is given by



σx =
p

2π
[2(θ1 − θ2) − sin 2θ1 + sin 2θ2]

σy =
p

2π
[2(θ1 − θ2) + sin 2θ1 − sin 2θ2]

τxy =
p

2π
[cos 2θ1 − cos 2θ2]

(58)
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Fig. 14. Displacement distribution in an infinite plate with a circular hole obtained using NC-
RPIM and LC-RPIM using regular nodes and different dimensions of the support domain. (a) u
along x-axis. (b) v along y-axis. (c) ur along inner arc surface.
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Fig. 15. Stress distribution in an infinite plate with a circular hole obtained using NC-RPIM
and LC-RPIM using regular nodes and different dimensions of the support domain. (a) σx along
y-axis. (b) σy along x-axis. (c) σθ along inner arc surface (EXACT(1) and EXACT(2) represent
the values along the inner arc surface and the centroid of Voronoi diagrams of nodes along the
inner surface, respectively).
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Fig. 16. Semi-infinite plane subjected to an uniform pressure. (a) Configuration and coordinates.
(b) Computation model (a = 0.2 m, c = 100, p = 1 MPa).

The analytical solution of displacement for the plane stress is given by




u =
p(1 − ν2)

πE

{
1 − 2ν

1 − v
[(x + a)θ1 − (x − a)θ2] + 2y ln

r1

r2

}

v =
p(1 − ν2)

πE

{
1 − 2ν

1 − v

[
y(θ1 − θ2) + 2ca

(
arctan

1
c

)]
+ 2(x − a) ln r2

− 2(x + a) ln r1 + 2a ln(a2(1 + c2))
}

(59)

where a is a half width applied pressure, an c is a coefficient. ca is the distance from
the origin to the point O′ where the vertical displacement is assumed to be zero, as
shown in Fig. 16(a).

Taking advantage of symmetry about the y-axis, the problem is modeled with a
5a×5a square of a = 0.2 m, as shown in Fig. 16(b), and coefficient c is fixed at 100.



July 6, 2007 22:11 WSPC/IJCM-j050 00113

Linearly Conforming RPIM for Solid Mechanics Problems 423

On the boundary of symmetry (y = 0), the displacement in the x-direction is fixed,
while on the bottom boundary (y = −1) the displacements are prescribed using
Eq. (59). Similarly on the right boundary (x = 1) the tractions computed using
Eq. (58) are applied. Material parameters used in computation are E = 100 MPa
and v = 0.3. The computational background cells, nodal distribution and Voronoi
diagrams are shown in Fig. 17.

5.4.1. Convergence comparison

In this investigation, regularly distributed nodes are used, and the dimension of
the nodal support domain used is αs = 2.0 and αs = 3.0. The relative errors of
both displacement and energy are calculated using both LC-RPIM and NC-RPIM
as plotted in Fig. 18, with the change of the average nodal spacing. It is observed
again that these two methods converge at about the same rate regardless of the
dimension of the support domain. The displacement accuracy for the NC-RPIM is

(a) (b)

(c)

Fig. 17. (a) Background integration cells for NC-RPIM. (b) Regular nodes and Voronoi diagrams.
(c) Irregular nodes and Voronoi diagrams (αir = 0.4).
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Fig. 18. Convergence of solution for the semi-infinite plane problem obtained using NC-RPIM and
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Fig. 19. Displacement distribution along free surface of the semi-infinite plane problem obtained
using NC-RPIM and LC-RPIM with regular and irregular (αir = 0.4) nodes (αs = 2.5). (a)
Horizontal displacement u. (b) Vertical displacement v.

higher than that of LC-RPIM, however the accuracy in terms of the energy norm
for the LC-RPIM is higher than that of NC-RPIM.

5.4.2. Comparisons of displacement and stress

In this investigation, both regularly and irregularly (αir = 0.4) distributed nodes
are used with the support domain of αs = 2.5. The displacements computed along
upper free surface are plotted in Fig. 19. It is shown that the results of the two
methods are in good agreement with the analytical results. The stresses calcu-
lated along the diagonal line (O-B) are plotted in Fig. 20. It is clearly observed
that the stresses obtained by the presented LC-RPIM coincide better with the
analytical solutions than those of NC-RPIM, especially for irregular nodes and
near the boundary. This shows again that the LC-RPIM is less sensitive to nodal
irregularity.
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Fig. 20. Stress distribution along the diagonal line (O-B) of the semi-infinite plane problem
obtained using NC-RPIM and LC-RPIM with regular and irregular (αir = 0.4) nodes (αs = 2.5).
(a) σxx (b) σyy (c) τxy.

5.5. Triangular plate with a heart-shaped hole

To examine the capability of LC-RPIM for problem with very irregular config-
uration, we now study the deformation and stress of a triangular plate with
a heart-shaped hole subjected to a unilateral uniform pressure of p = 1.0 MPa,
as shown in Fig. 21. Plane stress problem is considered, and the material of
E = 104 MPa and ν = 0.25 is used in computation. The background cells for NC-
RPIM, nodal distribution (962 nodes) and Voronoi diagrams are shown in Fig. 22.
Since there is no analytical solution for this problem, the problem is analyzed using
FEM software ABAQUS with a large number of (8140) nodes so that the results
can be used as a reference solution for comparison purpose.

In this investigation, three dimensions of the support domain are used: αs =
1.5, 2.5 and 3.5. The displacement computed using these different methods is plot-
ted in Fig. 23, and the stress along y axis on the heart-shaped tip (D-C) is also
pictured in Fig. 24. It is clearly shown that the displacement and stress obtained
by LC-RPIM are more stable and agree better with those of FEM compared to
NC-RPIM. Note that NC-RPIM gives very good results when αs ≥ 2.5, as sug-
gested by Liu [2003].
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Fig. 21. Triangular plate with a heart-shaped hole, which is consisted of two splines through D-F-E
and D-G-E, respectively, subjected to unilateral uniformed pressure (All dimension is meters).

(a) (b)

Fig. 22. Triangular plate with a heart-shaped hole. (a) Background integration cells for NC-RPIM
(b) Nodal collection and Voronoi diagrams for LC-RPIM.
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Fig. 23. Effect of the equivalent nodal spacing on displacement distribution along free boundary
(A-C) of the triangular plate with a heart-shaped hole obtained using NC-RPIM and LC-RPIM.
(a) Horizontal displacement u. (b) Vertical displacement v.
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Fig. 24. Effect of the equivalent nodal spacing on stress distribution along the vertical line (D-C)
of the triangular plate with a heart-shaped hole obtained using NC-RPIM and LC-RPIM. (a) σxx

(b) σyy (c) τxy.

6. Conclusion

A linearly conforming radial point interpolation method (LC-RPIM) is presented
in this work based on nodal integration. In this method, each node is enclosed
by a Voronoi polygon. The conformability is restored by (a) using RPIM shape
functions with at least complete linear consistency; (b) the gradient is averaged
over the smoothing domain leading to constant strain for the nodal integration.
The essential boundary is imposed directly as in the FEM.

Compared with NC-RPIM, the LC-RPIM has been found to have the following
advantages:

(1) The LC-RPIM can accurately reproduce linear displacement field. The method
can achieve the linear convergence rate, which is about 2.0 for displacement and
1.0 for energy as demonstrated in examples.

(2) More stable and accurate in stress than NC-RPIM. The computed results of
LC-RPIM are less susceptible to the dimension of the support domain and the
nodal irregularity compared to NC-RPIM.

(3) The LC-RPIM using nodal integration is generally more efficient than the orig-
inal RPIM using Gaussian integration.
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